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Abstract
Quantum creation of the universe is described by the density matrix defined
by the Euclidean path integral. This yields an ensemble of universes—a
cosmological landscape—in a mixed quasi-thermal state which is shown to
be dynamically more preferable than the pure quantum state of the Hartle–
Hawking type. The latter is suppressed by the infinitely large positive action
of its instanton, generated by the conformal anomaly of quantum matter. The
Hartle–Hawking instantons can be regarded as posing initial conditions for
Starobinsky solutions of the anomaly driven de Sitter expansion, which are
thus dynamically eliminated by infrared effects of quantum gravity. The
resulting landscape of hot universes treated within the cosmological bootstrap
(the self-consistent back reaction of quantum matter) turns out to be limited to
a bounded range of the cosmological constant, which rules out a well-known
infrared catastrophe of the vanishing cosmological constant and suggests an
ultimate solution to the problem of unboundedness of the cosmological action
in Euclidean quantum gravity.

PACS numbers: 04.60.Gw, 04.62.+v, 98.80.Bp, 98.80.Qc

1. Introduction

The ideas of quantum cosmology [1, 2] and Euclidean quantum gravity [3, 4] are again
attracting attention. One of the reasons is the fact that the landscape of string vacua is
too big [5] to hope that a reasonable selection mechanism can be successfully worked out
within string theory itself. Thus, it is expected that other methods have to be invoked,
at least some of them appealing to the construction of the cosmological wavefunction
[6–9]. This quantum state arises as a result of quantum tunnelling from the classically
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Σ Σ’

Figure 1. Picture of instanton representing the density matrix. Dashed lines depict the Lorentzian
universe nucleating from the instanton at the minimal surfaces � and �′.

Σ Σ’

Figure 2. Density matrix of the pure Hartle–Hawking state represented by the union of two vacuum
instantons.

forbidden state of the gravitational field. The Hartle–Hawking wavefunction of the universe
[3, 4] describes nucleation of the de Sitter universe from the Euclidean four-dimensional
hemisphere, �HH ∼ exp(−SE) = exp(3π/2G�) and has a negative action which diverges to
−∞ for the cosmological constant � → 0. This implies a well-known infrared catastrophe
of small cosmological constant—a vanishing � is infinitely more probable than any positive
one. Alternative tunnelling proposals for the wavefunction of the universe in the form of
Linde [10] or Vilenkin [11] give preference to big values of �, which opens the possibility
for conclusions opposite to the Hartle–Hawking case. In particular, the inclusion of one-loop
effects allows one to shift most probable values of the effective cosmological constant from
zero to a narrow highly peaked range compatible with the requirements of inflation [12].

In this work we study the Hartle–Hawking prescription of the Euclidean path integration
taking into account essentially nonlocal quantum effects mediated by nonlocal terms of non-
vacuum nature. The core of our suggestion is a simple observation that the presence of
radiation implies a statistical ensemble described by the density matrix, rather than a pure
state assumed in [7, 8]. Density matrix in Euclidean quantum gravity [13], ρ[ϕ, ϕ′], originates
from an instanton with two disjoint boundaries � and �′ associated respectively with its two
entries, see figure 1. Note that mixed nature of the quantum state is fundamental and the origin
of impurity is not caused by coarse graining or tracing out environmental degrees of freedom.

In contrast, the pure density matrix of the Hartle–Hawking state corresponds to the
situation when the instanton bridge between � and �′ is broken, so that topologically the
instanton is a union of two disjoint hemispheres. Each of the half-instantons smoothly closes
up at its pole which is a regular internal point of the Euclidean spacetime ball, see figure 2—a
picture illustrating the factorization of ρ̂ = |�HH〉〈�HH|.

When calculated in the saddle-point approximation the density matrix automatically gives
rise to radiation whose thermal fluctuations destroy the Hartle–Hawking instanton. Namely,
the radiation stress tensor prevents the half-instantons of the above type from closing and,
thus, forces the tubular structure on the full instanton supporting the thermodynamical nature
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of the physical state. The existence of radiation, in its turn, naturally follows from the
partition function of this state. The partition function originates from integrating out the field
ϕ in the coincidence limit ϕ′ = ϕ. (This procedure is equivalent to taking the trace of the
operator exp(−βH) inherent in the calculation of the partition function for a system with the
Hamiltonian H.) This corresponds to the identification of �′ and �, so that the underlying
instanton acquires toroidal topology. Its points are labelled by the periodically identified
Euclidean time, a period being related to the inverse temperature of the quasi-equilibrium
radiation. The back reaction of this radiation supports the instanton geometry in which this
radiation exists, and we derive the equation which makes this bootstrap consistent.

We show that for the radiation of conformally invariant fields the analytical and numerical
solution of the bootstrap equations yields a set of instantons—a landscape—only in the
bounded range of �,

�min < � < �max. (1)

This set consists of the countable sequence of one-parameter families of instantons which we
call garlands, labelled by the number k = 1, 2, 3, . . . of their elementary links. Each of these
families spans a continuous subset, �(k)

min < � � �(k)
max, belonging to (1). These subsets of

monotonically decreasing lengths �(k)
max − �(k)

min ∼ 1/k4 do not overlap and their sequence has
an accumulation point at the upper boundary �max of the range (1). Each of the instanton
families at its upper boundary �(k)

max saturates with the static Einstein universe filled by a hot
equilibrium radiation with the temperature T(k) ∼ mP / ln k2, k � 1, and having the negative
decreasing with k action �

(k)
0 ∼ − ln3 k2/k2. Remarkably, all values of � below the range

(1), � < �min, are completely ruled out either because of the absence of instanton solutions
or because of their infinitely large positive action.

The details of our approach have recently been presented in [14], while here we discuss
its basic points and, in particular, establish its relation to the well-known Starobinsky model
[15] of the self-consistent de Sitter expansion driven by the conformal anomaly of quantum
fields.

2. The effective action, generalized Friedmann equations and bootstrap

As shown in [14] the effective action of the cosmological model with a generic spatially
closed FRW metric ds2 = N2(τ ) dτ 2 +a2(τ ) d2
(3) = a2(dη2 +d2
(3)) sourced by conformal
quantum matter has the form

�[a(τ),N(τ)] = 2
∫ τ+

τ−
dτ

(
−aȧ2

N
− Na + NH 2a3

)
+ 2B

∫ τ+

τ−
dτ

(
ȧ2

Na
− 1

6

ȧ4

N3a

)

+ B

∫ τ+

τ−
dτN/a + F

(
2
∫ τ+

τ−
dτN/a

)
, (2)

where a(τ) is the cosmological radius, N(τ) is the lapse function, H 2 = �/3 and integration
runs between two turning points at τ±, ȧ(τ±) = 0. Here the first line is the classical part,
the second line is the contribution of the conformal transformation to the metric of the static
instanton ds̄2 = dη2 + d2
(3) (η is the conformal time) and the last line is the one-loop action
on this static instanton. The conformal contribution �1−loop[g] − �1−loop[ḡ] is determined by
the coefficients of �R, the Gauss–Bonnet invariant E = R2

µναγ − 4R2
µν + R2 and Weyl tensor

term in the conformal anomaly gµνδ�1−loop/δgµν = g1/2
(
α�R + βE + γC2

µναβ

)/
4(4π)2.

Specifically this contribution can be obtained by the technique of [16]; it contains higher
derivative terms ∼ä2 which produce ghost instabilities in solutions of effective equations.
However, such terms are proportional to the coefficient α which can be put to zero by adding
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Figure 3. Instanton domain in the (H 2, C) plane. Garland families are shown for k = 1, 2, 3, 4.
Their sequence accumulates at the critical point (1/2B, B/2).

the following finite local counterterm:

�R[g] = �1−loop[g] +
1

2(4π)2

α

12

∫
d4x g1/2R2(g). (3)

This ghost-avoidance renormalization is justified by the requirement of consistency of the
theory at the quantum level. The contribution �R[g] − �R[ḡ] to the renormalized action then
gives the second line of (2) with B = 3β/4.

The static instanton with a period η0 playing the role of inverse temperature contributes
�1−loop[ḡ] = E0η0 + F(η0), where the vacuum energy E0 and free energy F(η0) are the
typical boson and fermion sums over field oscillators with energies ω on a unit 3-sphere
E0 = ±∑

ω ω/2, F (η0) = ±∑
ω ln(1 ∓ e−ωη0). The renormalization (3) which should be

applied also to �1−loop[ḡ] modifies E0, so that �R[ḡ] = C0η0 + F(η0), C0 ≡ E0 + 3α/16.
This gives the third line of equation (2) with C0 = B/2. This universal relation between C0

and B = 3β/4 follows from the known anomaly coefficients [17] and the Casimir energy in a
static universe [18] for scalar, Weyl spinor and vector fields.

The Euclidean Friedmann equation looks now as

ȧ2

a2
+ B

(
1

2

ȧ4

a4
− ȧ2

a4

)
= 1

a2
− H 2 − C

a4
, (4)

C = B/2 + F ′(η0), η0 = 2
∫ τ+

τ−
dτ/a(τ). (5)

The contribution of the nonlocal F(η0) in (2) reduces here to the radiation constant C
as a nonlocal functional of a(τ), determined by the bootstrap equation (5), F ′(η0) ≡
dF(η0)/dη0 > 0 being the energy of a hot gas of particles, which adds to their vacuum
energy B/2.

Periodic instanton solutions of equations (4)–(5) exist only inside the curvilinear wedge
of (H 2, C) plane between bold segments of the upper hyperbolic boundary and the lower
straight line boundary of figure 3,

4CH 2 � 1, C � B − B2H 2, BH 2 � 1/2. (6)

Below this domain the solutions are either complex and aperiodic or suppressed by infinite
positive Euclidean action. Indeed, a smooth Hartle–Hawking instanton with a− = 0 yields
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η0 → ∞ in view of (5), so that F(η0) ∼ F ′(η0) → 0. Therefore, its on-shell action

�0 = F(η0)−η0F
′(η0) + 4

∫ a+

a−

daȧ

a

(
B − a2 − Bȧ2

3

)
(7)

due to B > 0 diverges to +∞ at a− = 0 and completely rules out pure-state instantons
[14]. For the instanton garlands, obtained by gluing together into a torus k copies of a simple
instanton [19], the formalism is the same as above except that the conformal time in (5) and
the integral term of (7) should be multiplied by k. As in the case of k = 1, garland families
interpolate between the lower and upper boundaries of (6). They exist for all k, 1 � k � ∞,
and their infinite sequence accumulates at the critical point C = B/2,H 2 = 1/2B, with the
on-shell action �

(k)
0 
 −B ln3 k2/4k2π2 which, in contrast to the tree-level garlands of [19],

is not additive in k.

3. Conclusions: Euclidean quantum gravity and the Starobinsky model

Elimination of the Hartle–Hawking vacuum instantons implies also ruling out well-known
solutions in the Starobinsky model of the anomaly (and vacuum energy) driven de Sitter
expansion [15]. Such solutions (generalized to the case of a nonzero ‘bare’ cosmological
constant 3H 2) can be obtained by the usual Wick rotation from the solutions of (4) with the
thermal contribution switched off. The corresponding Euclidean Friedmann equation reads

ȧ2

a2
− 1

a2
+

B

2

(
ȧ2

a2
− 1

a2

)2

+ H 2 = 0, (8)

and has a generic solution of the form a = sin hτ/h, 1/a2 − ȧ2/a2 = h2, with the following
two values of the Hubble parameter h = h±, h2

± = (1/B)(1 ± √
1 − 2BH 2). For H = 0,

this is exactly the Euclidean version of Starobinsky’s solution [15] with h2
+ = 2/B. For larger

H 2 < 1/2B, we have two families of exactly de Sitter instantons which can be regarded as
initial conditions for the ‘generalized’ solutions of Starobinsky. However, all of them are ruled
out by their infinite positive Euclidean action.

What remains is a quasi-thermal ensemble of non-vacuum models in the bounded
cosmological constant range (1) with �min > 0 and �max = 3/2B and with a finite value of
their effective Euclidean action. This implies the elimination of the infrared catastrophe of
� → 0 and the ultimate solution to the problem of unboundedness of the on-shell cosmological
action in Euclidean quantum gravity. As a byproduct, this also suggests strong constraints on
the cosmological constant apparently applicable to the resolution of the cosmological constant
problem.
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